Spin-wave edge modes in finite arrays of dipolarly coupled magnetic nanopillars

Abstract

The frequency spectrum of spin-wave edge modes localized near the boundaries of a finite array of dipolarly coupled magnetic nanopillars is calculated theoretically. Two mechanisms of edge mode formation are revealed: inhomogeneity of the internal static magnetic field existing near the array boundaries and time-reversal symmetry breaking of the dipole-dipole interaction. The latter mechanism is analogous to the formation mechanism of a surface Damon-Eschbach mode in continuous in-plane magnetized magnetic films and is responsible for the nonreciprocity of edge modes in finite-width nanopillar arrays. The number of edge modes in nanopillar arrays depends on the spatial profile of the internal static magnetic field near the array boundaries and several edge modes are formed if a substantial field inhomogeneity extends over several rows of nanopillars.

Publication
Physical Review B vol. 90 issue 10 page 104417
Date